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Abstract

Machine-learning excels in many areas with well-
defined goals. However, a clear goal is usually not
available in art forms, such as photography. The
success of a photograph is measured by its aesthetic
value, a very subjective concept. This adds to the
challenge for a machine learning approach.
We introduce Creatism, a deep-learning system for
artistic content creation. In our system, we break
down aesthetics into multiple aspects, each can be
learned individually from a shared dataset of pro-
fessional examples. Each aspect corresponds to an
image operation that can be optimized efficiently.
A novel editing tool, dramatic mask, is introduced
as one operation that improves dramatic lighting for
a photo. Our training does not require a dataset with
before/after image pairs, or any additional labels to
indicate different aspects in aesthetics.
Using our system, we mimic the workflow of
a landscape photographer, from framing for the
best composition to carrying out various post-
processing operations. The environment for our
virtual photographer is simulated by a collection of
panorama images from Google Street View. We de-
sign a “Turing-test”-like experiment to objectively
measure quality of its creations, where professional
photographers rate a mixture of photographs from
different sources blindly. Experiments show that a
portion of our robot’s creation can be confused with
professional work.

1 Introduction
Great progress has been made in both camera hardware and
computational photography, such that a modern cell phone
can take technically solid photographs, in terms of exposure
level, noise level, pixel sharpness, color accuracy, etc. How-
ever, a good photo should be not only technically solid, but
also aesthetically pleasing.

Aesthetics is vague and subjective, a metric hard to define
scientifically. Multiple research exists [Murray et al., 2012]
[Kong et al., 2016] to collect dataset to define aesthetic qual-
ity. Generating images towards top aesthetic quality is an
even harder problem. A naive approach using a single aes-
thetic prediction is insufficient to capture different aspects in
aesthetics, as we will show in experiment.

In this paper, we introduce Creatism, a deep-learning sys-
tem for artistic content creation. Here aesthetics is treated not
as a single quantity, but as a combination of different aspects.
Each aspect is learned independently from professional ex-
amples, and is coupled with an image operation that can mod-
ify this aspect. By making image operations semi-orthogonal,
we can efficiently optimize a photo one aspect at a time.

Another advantage of coupling an aesthetic aspect with an
image operation is that we can simulate “negative” examples
tailored towards that aspect. This gets rid of the need to col-
lect before/after image pairs from professionals to indicate
how to improve each aspect. In this project the dataset for aes-
thetic aspects training is a collection of professional-quality
photos with no additional labels.

In addition to learn aesthetic aspects with known image
operations, we show that it is also possible to define new op-
erations from this unlabeled dataset. By combining a set of
existing image filters to generate negative examples, we train
a new image operation, dramatic mask, that can enhance dra-
matic lighting in photos.

One standing problem for current enhancement works is
quality metric, especially on higher end of aesthetics. A user-
study with image comparison tells which images are better.
But a “better” image may still remain mediocre. A direct
scoring method is limited by the expertise of the evaluators,
who are also susceptive to bias in a non-blind setting.

What is the “ultimate” metric for the highest aesthetic stan-
dard human can define? Drawing inspiration from the famous
Turing-test, we propose the following metric:

• A generated photo is at professional level, if profession-
als, in a blind test, can not tell whether it is created by
an algorithm, or by another professional.

In our work we use “professional”, i.e. professional pho-
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tographers, to represent best experts in photography. The
standard can be further raised by replacing that word with,
say, “top 10 master photographers in the world”.

We work with professional photographers to define 4 levels
of aesthetic quality, with the top level “pro”. In experiment
we ask professionals to rate a random mixture of photos into
different levels, with photos taken by our robot mixed in. For
robot creations with high prediction scores, about 40% ratings
we receive are at semi-pro to pro level. While we didn’t beat
our “Turing-test” consistently, we show that creating photos
using machine learning at professional quality is made possi-
ble.

Our contributions in this paper are:
• A deep-learning system that learns different aspects of

aesthetics and applies image operations to improve each
aspect in a semi-orthogonal way, using a dataset of pro-
fessional quality photos with no additional labels, or be-
fore/after image pairs.
• Introduce dramatic mask as a novel image operation to

enhance dramatic lighting in photos.
• In a “Turing-test”-like experiment, we show that our sys-

tem can create photos from environment with some of
them at semi-pro to pro level.

The rest of the paper is organized as following: Related
works are discussed in Section 2. We describe the framework
of Creatism system in Section 3, including how to train deep-
learning models for different aspects in aesthetics, and how
to optimize each aspect independently in a photo using its
associated image operation. Two special image operations,
cropping and dramatic mask, are discussed in Section 4. To
evaluate photos created by our robot, aesthetic levels are de-
fined in Section 5. Experiments are presented in Section 6.

2 Related Work
Datasets were created that contain ratings of photographs
based on aesthetic quality [Murray et al., 2012] [Kong et al.,
2016] [Lu et al., 2015a]. Machine-learning methods have
been used to train models on aesthetic quality using such
datasets, with either hand-crafted features [Murray et al.,
2012] [Marchesotti et al., 2014], or deep neural network [Lu
et al., 2014] [Lu et al., 2015b].

Image enhancement can be guided by learned aesthetic
model. In [Yan et al., 2016] color transformation is predicted
from pixel color and semantic information, learning from be-
fore and after image pairs edited by a photographer.

Beyond judging a photo as simply “good” or “bad”, mul-
tiple aspects of aesthetics can be learned to control image
filters. In [Jaroensri et al., 2015], images with brightness
and contrast variations were evaluated as acceptable or not
by crowd computing, which in turn predicts acceptable range
of these filters on new images. However, sampling images in
2 − D space of brightness and contrast and having them la-
beled by people does not scale well. In this paper we present
an approach that studies each filter in its own subspace. We
also get rid of human labelling in this step.

AVA dataset was used to train image cropping in [Mai
et al., 2016], where a sliding-window was applied to an im-
age to yield the best crop. A recent approach in [Chen et al.,

2017] is similar in spirit to ours, where the authors learn a
model for aesthetic composition by using random crops as
negative examples. Our approach decouples multiple aes-
thetic aspects including composition. In the special case of
cropping, we show that a hybrid approach leads to more vari-
ations of good cropping candidates.

Pair-wise image style transfer is another way to enhance
images. Deep-learning approaches, pioneered by [Gatys
et al., 2015], show huge advantage over traditional texture-
synthesis based approaches [Hertzmann et al., 2001]. Recent
research also transfers styles from photos to photos while pre-
serving realistic details in results [Luan et al., 2017]. How-
ever, such transfer requires the user to manually provide an
image or painting as the target. The success of transfer heav-
ily depends on how suitable the target is.

In Generative-Adversarial Networks (GANs) [Goodfellow
et al., 2014], a generative model G and a discriminative model
D are simultaneously trained. It leads to amazing content cre-
ation ability, being able to generate plausible images of differ-
ent categories [Radford et al., 2015] [Nguyen et al., 2016]
[Zhu et al., 2017]. Conditions can be introduced to control
GAN’s results [Mirza and Osindero, 2014]. Such condition
may come from another image, such that generated results
become a variation of the input image [Isola et al., 2016].

However, GAN results usually contain noticeable artifacts.
This limits its application in image enhancement. In this pa-
per we introduce an image operation “dramatic mask” that
uses a similar structure as DC-GAN [Isola et al., 2016]. In-
stead of outputting pixels directly, it creates a low-resolution
mask to modulate brightness, conditioned by original image.
This operation enhances dramatic lighting in many photos.

Evaluation on aesthetics is very subjective. Comparing to
ground truth [Mai et al., 2016] [Chen et al., 2017] is only vi-
able when ground-truth exists. User study is another option,
where typically 2 or more images are compared to yield the
best one [Yan et al., 2016]. However, the winning image in
a group may still be of low aesthetic quality. Previous study
shows that image comparison can produce absolute ranking
given enough pairs [Mantiuk et al., 2012]. However collect-
ing huge amount of pairs from professionals is not practical.
Instead, we adapt an approach with an absolute scoring sys-
tem. Our evaluation is a “Turing-test” on aesthetic quality,
where professionals are asked to give scores to a mixture of
photos with predefined absolute meaning.

3 Problem Formulation
Assume there exists a universal aesthetics metric, Φ, that
gives a higher score for a photo with higher aesthetic qual-
ity. A robot is assigned a task to produce the best photograph
P , measured by Φ, from its environment E . The robot seeks
to maximize Φ by creating P with optimal actions, controlled
by parameters {x}:

arg max
{x}

(Φ(P (E , {x}))) (1)

The whole process of photo generation P (E , {x}) can be
broken down into a series of sequential operations Ok, k =



1...N , controlled by their own set of parameters {xOk
}. Each

Ok operates on its subject to yield a new photo:

Pk = Ok({xk}) ◦ .... ◦O1({x1}) ◦ E
A well-defined and differentiable model of Φ will conclude

our paper at this point. But in practice, it is next to impossible
to obtain a dataset that defines Φ. Here are several reasons
why:

• Curse of Dimensionality

By definition, Φ needs to incorporate all aesthetic aspects,
such as saturation, detail level, composition... To define Φ
with examples, number of images needs to grow exponen-
tially to cover more aspects [Jaroensri et al., 2015].

To make things worse, unlike traditional problems such as
object recognition, what we need are not only natural images,
but also pro-level photos, which are much less in quantity.

• Meaningful Gradient

Even if Φ manages to approximate aesthetic quality using
examples, its gradient may not provide guidance on every as-
pect in aesthetics. If a professional example was introduced
mainly for its composition quality, it offers little insight on
HDR strength for similar photos.

• Before/After Pairs are Harder to Obtain

To put things to extremity, let’s say all pro-level photos
in this dataset have a signature printed somewhere, while all
lower-quality photos don’t. Φ can be trained to high accuracy
just by detecting signatures. Obviously such Φ provides no
guidance to our goal. In reality it is similarly hard to force Φ
to focus on aesthetic quality alone, instead of other distribu-
tion imbalance between photos at different quality.

One useful trick is to provide photo-pairs before and after
post-processing by photographers. This way Φ is forced to
only look at difference the photographer made. However, it
is even harder to collect such a dataset in large quantity.

• Hard to Optimize

It is difficult to optimize all aesthetic aspects in their joint
high-dimensional space.

3.1 Segmentation of Φ

In our paper, we resolve above issues by choosing opera-
tions Ok to be approximately “orthogonal” to each other.
With that we segment Φ into semi-orthogonal components:
Φ := Σ

k
Φk + Φres , where Φk only measures aesthetic

changes thatOk is capable of causing. This way applyingOk
has much less impact on all other Φj , j 6= k, which makes the
optimization problem separable.

The objective function in Eq (3) is approximated as:

Σ
k

(arg max
{xOk

}
(Φi(Pi({xOk

})))) + Φres(PN )

Here each arg max
{xOk

}
(Φk(Pk({xOk

}))) becomes a lot more

tractable. Intuitively, if Ok is an image filter that changes
overall saturation, Pk({xOk

}) := Ok({xOk
}) ◦Pk−1 applies

saturation filter, controlled by {xOk
}, on a constant input

photoPk−1 from last step. Φk is a metric that only cares about
how much saturation is aesthetically pleasing for a photo. The
optimization seeks the right saturation amount that satisfies
Φk. Such optimization happens in the dimension of {xOk

},
which is much lower comparing to Eq (3), sometimes even in
1d.

Φres captures all remaining aesthetic aspects missed by
{Φk}. However, if {Ok} exhausts our operations, whose aes-
thetic effects were already measured by {Φk}, there is liter-
ally nothing we can do to improve Φres.

However, aesthetic aspects in Φres can still be captured to
evaluate overall aesthetic quality. We train a scorer Φ

′ ∼
Φ := Σ

k
Φk + Φres using Inception v3 [Szegedy et al., 2015]

to predict AVA ranking scores (see Section 5) directly from
images. This scorer is later used to rank created photos.

3.2 Selection of Operations {Ok}
The intuition behind the requirement for {Ok} to be “orthog-
onal”, is that we don’t want a later step Oj to damage aes-
thetic quality Φi that was optimized by an earlier step Oi.
But in practice, the pixel change caused by any image filter is
hardly orthogonal to that of another. We use this term loosely,
and manually pick operations {Ok} in following order:

• Composite an image from environment

• Apply saturation filter

• Apply HDR filter

• Apply dramatic mask

Their effects are roughly independent to each other, focus-
ing on composition, saturation, detail level and low frequency
brightness variation, respectively. In section 6.3 we will show
how this semi-orthogonality helps each Φk to focus on its re-
spective aesthetic aspect.

3.3 Operation-Specific Aesthetic Metrics {Φk}
Let’s use a saturation filter Os as an example of image op-
erations. We want to train a metric Φs, that focuses only on
aesthetic quality related to saturation, not on anything else.

If a dataset contains photos with labeled overall aesthetic
quality, it can not be directly used to train Φs because contri-
bution of saturation is mixed with all other aesthetic aspects.
Instead, we propose a method that only uses pro-level photos
as positive examples for saturation training, with the maxi-
mum Φs score assigned to them. We then randomly perturb
saturation level in these photos using Os. Its difference to
the original photo serves as a penalty on Φs for the perturbed
photo.

A deep-learning model is then trained to predict Φs for
these photos. Since a high-score photo and its low-score
counter-part only differ by the perturbation, the model fo-
cuses only on whatOs did, nothing else. This makes Φs much
easier to train than Φ. While gradient in Φ can be ill-defined,
we can now find gradient for each Φk using its respectiveOk.

Since negative examples are generated on the fly, this
method removes the need for before/after photo pairs in
dataset. We can start with a same set of professional photos
to train different aspects in aesthetics.



Require: Dataset of professional photos {M}
Require: Image operation Ok: Mout = Ok({x}) ◦Min

Require: A metric measures similarity between two photos:
Sim(M1,M2) ∈ [0, 1]. 1.0 means identical.

1: D = {}, a set to hold (image, score) pairs.
2: for Each image M in {M} do
3: Insert (M, 1.0) in D
4: # Randomly sample parameters within a range:
5: for Each dimension d in {x} do

offsetd = Random(xmind, xmaxd)
6: M

′
= Ok({offset}) ◦M

7: Insert (M
′
, Sim(M,M

′
)) in D

8: Train a model to predict score Φk from D

The algorithm for training Φk is given below.
When applying an operation on a photo, we optimize fil-

ter parameters to maximize Φk on the input photo. When
Ok has only one parameter, the optimization becomes a fast
1d search. In this project, we optimize Saturation and HDR
filters using this method.

4 Special Operations
Two special operations, cropping and dramatic mask, deviate
slightly from the algorithm in section 3.3.

4.1 Image Composition
In the first operation Ocrop, our robot finds the best composi-
tions from the environment. In our project, the environment
is represented by a spherical panorama. We first do 6 cam-
era projections to sample the panorama: each projection is
separated by 60 degree to cover all directions, with pitch an-
gle looking slightly up at 10 degree, field of view 90 degree.
This way each project overlaps with its neighbors to increase
chance for any composition to be contained in at least one
projection.

Φcrop is trained to pick the best crop for each of these 6 im-
ages. Its training is similarly to other Φk, where a perturbed
image M

′
is a random crop from M . Sim(M,M

′
) is simply

defined as Area(M
′
)

Area(M) . Both M and M
′

are resized to a square
of fixed size before training.

Intuitively, the score says that in a professional photo M ,
the photographer chose current composition over a zoomed-
in version to favor a better composition. Since cropping only
removes content, M

′
never creates a case when a good com-

position is encompassed by unnecessary surroundings. While
techniques like image inpainting can potentially fake some
surrounding to a photo, in practice we noticed Φcrop performs
reasonably well without such cases.

However, cropping needs special treatment because the
correlation between its operation Ocrop and other Φk. Intu-
itively, if we change saturation of a photo, Φcrop is designed
to remain indifferent. But if we crop an image to a small
patch, Φs may suffer a lot, because image content is totally
changed.

Thus we can not turn a blind eye to other aesthetic aspects
during cropping. We instead use

Φ
′

crop(c) := c× Φcrop + (1− c)× Φ
′

Φ
′

is an approximate to Φ that judges overall aesthetic from
Section 3.1. c is a constant to weigh in the importance of
composition vs. overall aesthetic quality. In Section 6.2,
experiment shows that such a hybrid metric leads to better
cropping options.

During optimization, a sliding window at different size and
aspect ratio searches for crops with high Φ

′

crop(c).

4.2 Dramatic Mask
A photographer often needs to stay at one spot for hours,
waiting for the perfect lighting. When that doesn’t work out,
post-process may also add dramatic or even surreal lighting to
a photo. Vignetting is a commonly used filter that modulates
brightness spatially with fixed geometry, usually brighter near
the center, darker at boundary. Changing lighting based on
image content is typically a manual job.

We want to learn a novel image operation, dramatic mask,
that enhances dramatic lighting by modulating brightness
gradually in a photo. Good examples with such lighting must
exist in {M}. However, {M} contains no additional label to
indicate that. We show that it is still possible to learn such a
specific operation from unlabeled dataset.

Since we do not have an existingOdramatic to create {M ′}
as negative examples, we use a list of existing image filters
{Fj} that are capable to change brightness in various ways:
M

′
= Randomly pick from {Fj ◦M}

The selection of {Fj} is discussed in section 6.4. Here the
assumption is M , being a professional photo, has a chance
of containing dramatic lighting. If the lighting in the photo
is changed significantly by any Fj , it will likely lead to less
ideal lighting.

Since Odramatic does not exist yet, we no longer separate
the training of Φdramatic from the applying of Odramatic
as in section 3.3. Instead, they are trained jointly in a
Generative-Adversarial Network (GAN).

GAN has demonstrated great capability in creating appar-
ently novel contents from examples. In most cases such cre-
ation is seeded by random numbers or controlling parameters.
Its outcome is typically a fixed-size raster in image space,
usually with some noticeable artifacts. Generating an image
at arbitrary size without artifacts is currently challenging.

Instead of generating pixels directly, we target to generate
the “editing” operation Odramatic using GAN, which is less
susceptive to artifacts. This operation is parameterized by a
low-frequency 8 × 8 mask to modulates brightness of input
photo M ‘:
Odramatic ◦M

′
:= M

′
+mask× ( Brighten ◦M ′ −M ′

)
Here “Brighten” is an image filter that makes input

brighter. During training mask is smoothly up-scaled to the
size of M ‘ using bilinear interpolation.

We learn how to generate the mask in the generative model
G. The overall network architecture is DCGAN-based [Isola
et al., 2016], with G conditioned by our input image. Its net-
work architecture is depicted in Figure 1.



Figure 1: GAN structure for dramatic mask training.

The discriminative model D tries to distinguish images
from {M} and {Odramatic ◦M

′}. To encourage variations
in G, we do not have a loss that compares pixel-difference be-
tween Odramatic ◦M

′
and the photo M ‘ was derived from.

Intuitively, there should exist many different ways to change
the lighting in a scene such that it becomes more dramatic.

Due to the competitive nature of GAN, it is very difficult
for G to converge to a static state [Goodfellow et al., 2014].
Instead of waiting for an optimal mask, we use GAN to pro-
vide multiple candidates. We train multiple models with dif-
ferent random initialization, collecting snapshots over time.
All snapshots form a set of candidate models {M}. In the
end, Φ

′
is used to pick the best result generated from all mem-

bers of {M}.
Overall, the algorithm of how our robot operates is:

Require: The robot “travels” through environments {E}
1: Results {R} = {}
2: Photos to process {P} = {}.
3: for Each environment E in {E} do
4: Project E to 6 images {P0} in different directions
5: for Each projected image P0 do
6: for composition importance c in {0, 0.5, 1} do
7: Find best crops {P1} using Φ

′

crop(c)
8: Insert top k = 3 crops of {P1} into {P}
9: for Each P1 in {P} do

10: Maximize ΦHDR: P2 = OHDR ◦ P1

11: Maximize Φsaturation: P3 = Osaturation ◦ P2

12: Dramatic mask results {PM} = {},
13: for Each dramatic mask modelM in {M} do
14: P3i = Odramatic(M) ◦ P2

15: Insert P3i to {PM}
16: P3 = image in {PM} with max Φ

′
.

17: Insert P3 in {R}
18: For crops in {R} from same P0, keep one with max Φ

′

19: Rank {R} with Φ
′
.

5 Aesthetic Scale
In this paper, we target to generate photos towards profes-
sional quality on a measurable aesthetic “scale”, such that
they can be comparable with all other photos in the world.

We work with professional photographers to empirically de-
fine 4 levels of aesthetic quality:

• 1: point-and-shoot photos without consideration.
• 2: Good photos from the majority of population without

art background. Nothing artistic stands out.
• 3: Semi-pro. Great photos showing clear artistic aspects.

The photographer is on the right track of becoming a
professional.
• 4: Pro-work.

Clearly each professional has his/her unique taste that
needs calibration. We use AVA dataset to bootstrap a con-
sensus among them. All AVA images are sorted by their aver-
age voting scores. A single percentage ranking score between
[0, 1] is then assigned to each image. For example, an image
with ranking score 0.7 is ranked at top 30% among all AVA
images.

We empirically divide this ranking score into 4 levels using
thresholds 0.15, 0.7, 0.85, to roughly correspond to our aes-
thetic scale. This correspondence is by no means accurate.
It only encourages a more even distribution of sampled AVA
images across different qualities. We sample images evenly
from 4 levels, and mix them randomly.

Each professional is asked to score these images based on
the description of our aesthetic scale. After each round, we
find average score for each photo as the consensus. For indi-
vidual score deviating a lot from the consensus, we send the
photo with consensus to the corresponding professional for
calibration. After multiple rounds we noticed a significant
drop in score deviation, from 0.74 to 0.47.

At the end of this project, we asked professionals for their
own descriptions of our aesthetic scale. Feedback is summa-
rized in Table 1.

To map AVA ranking score Φ‘ to aesthetic scale in range
[1, 4], we fit Φ̄ = a×Φ‘ + b to professionals’ scores on AVA
dataset. Φ̄ is used in experiment to predict scores for each
image.

6 Experiments
6.1 Dataset
For professional landscape photos {M}, we collected ∼
15000 thumbnails, from high-rating landscape category on
500px.com. Our trainings use thumbnails at a resolution up
to 299× 299 pixel.

To make overall style more consistent, we choose to target
our goal as “colorful professional landscape”. We removed
images from dataset that are black&white or low in satura-
tion, with minimum average saturation per pixel set at 55%.
Similar approach can be used to train towards other styles,
such as “black&white landscape”.

AVA dataset [Murray et al., 2012] was used to train Φ
′
, as

well as for calibration of professionals’ scores.

6.2 Training of Cropping Filter
M

′
is randomly cropped from M in two batches. The first

batch concentrates on variations close to original image, so
we have more examples to learn when composition is close



to optimal. The cropped width is between (90%, 100%) of
original image. Aspect ratio is randomly selected between
(0.5, 2), with the area contained within image space. The
second batch deviates more from optimal composition, with
width range (50%, 90%). Both batches are equal in number.
Score is defined as area ratio, as described in section 4.1. The
training network is Inception v3 [Szegedy et al., 2015], which
is used to predicts score from input image.

For each projected photo from panorama, we pick top 3
candidates at each composition weight c ∈ {0, 0.5, 1}. All
these candidates move forward in pipeline independently. At
the end of the pipeline, the candidate with highest Φ

′
is se-

lected to represent that photo.
To further compare effects of composition weights, we

conducted a separate experiment, where 4 professionals are
presented with 3 cropped version of a same photo, using the
top candidate from each composition weight c ∈ {0, 0.5, 1}.
They are asked to pick the one with best composition, or se-
lect “none”. For all 100 input images, after excluding 10.4%
ratings of “none”, 22% images received a unanimous voting
on one cropping candidate. The distribution of c ∈ {0, 0.5, 1}
for winning candidates are 9.2%, 47.4% and 43.4%, respec-
tively. 80% images has up to two winning candidates. The
distribution of winners are 13.2%, 41.4% and 45.4%, respec-
tively. This shows that with our hybrid approach, we can pro-
duce better cropping candidates than using a single metric.

6.3 Training of Saturation and HDR Filters
In our approach the choice of {Ok} is flexible. For saturation
filter we used an implementation similar to the saturation ad-
justment of “Tune Image” option in Snapseed. During train-
ing M

′
is obtained by setting saturation parameter randomly

between (0%, 80%) of filter’s range, where 0% turns a photo
to black & white. Per-pixel-channel color difference δ is used
to derive saturation score, with maximum difference capped
at 6% for a score 0:

score := Sim(M,M
′
) :=

{
1− δ

6% , δ <= 6%
0, otherwise

For each M , 6 variations of M
′

were generated for train-
ing, together with M .

HDR filter was trained in a same way, using an implemen-
tation similar to “HDR Scape” in Snapseed. “Filter Strength”
is the only parameter we modify.

One difference here is “Filter Strength” only goes posi-
tively. While we can reduce saturation of an image, there
is no option to add “negative” HDR effect , which is the di-
rection we care more. Intuitively, we assume HDR effects
already exists in some M . We want to generate M

′
that con-

tains “less” HDR, so we can learn how an HDR filter can
help it to look more like M . We used a simple trick to mimic
“negative” HDR effect by a per-pixel operation:

F (−strength) ◦M = 2×M − F (strength) ◦M (2)

This way we expanded the range of “Filter Strength”
from (0,max) to (−max,max). We generate {M ′} in

two batches. For each M , we sample 6 variations of not-
enough-HDR examples M

′

1, with “Filter Strength” in range
(−max,−0.5max). We also sample 3 variations of too-
much-HDR examples M

′

2, with “Filter Strength” in range
(0.5max,max). Color difference δ is capped at 20%.

Training of both aesthetic metrics are same as that of crop-
ping metric.

During optimization for each photo, a quick 1d search on
parameter is applied for each filter. Saturation parameter is
tried from 40% to 90%, with step 10%. For HDR, “Filter
Strength” parameter is tried from 0% to 70% of maximum
range, with step 10%. The parameter of each filter with high-
est score is committed to apply on the photo.

In Figure 2, an example of changes in {Φk} from different
image operations are visualized. Saturation of input image is
increased from 0 to maximum in Figure 2b. Saturation score
shows a distinctive peak, while scores for HDR and compo-
sition remain more flat.

Note that overall aesthetic score Φ
′

shows continuous in-
creasement, well into saturation range that makes the image
over-saturated. This is expected, because the training of Φ

′
on

AVA dataset only involves natural images. Since a large por-
tion of higher-score images are more-saturated than typical
user photos directly from a cell phone, Φ

′
grows higher with

increasing saturation. However, since AVA does not inten-
tionally implant over-saturated images as negative examples,
Φ

′
does not penalize over-saturated images. This shows that

a naively-trained general aesthetic metric may not be suitable
for optimizing different aesthetic aspects.

Similarly, in Figure 2c HDR score shows a clear peak when
HDR strength increases. Once again Φ

′
remains high incor-

rectly even when HDR strength is too strong.
Figure 2d shows the special case of image composition.

Here a sliding window of half image width moves vertically
across the image at center, with aspect ratio 1.8. Composi-
tion score contains a peak near image center. However, both
saturation and HDR scores vary a lot. This is also expected,
because image statistics regarding saturation and detail level
both change as the sliding window moves. In other words,
cropping operation is less “orthogonal” to other image oper-
ations, which leads to our hybrid approach on composition
score.

For some photo {Φk}may become less orthogonal. For ex-
ample, when pixels over-saturate, details are also lost, which
may impact HDR score that measures detail level. Figure 3b
shows such an example, where as saturation increases, HDR
score starts to change too. In such a case, two linear search
in saturation and HDR strength separately may not yield op-
timal solution. Global methods like gradient-descent can find
better solution, at the cost of more expensive search. In this
paper we use separated linear-search to generate all results.

6.4 Training of Dramatic Mask
We use following image filters with equal chance to generate
{Fj}. (Note that they can be replaced by other reasonable
alternatives.)
• Snapseed “Tune Image”, brightness parameter randomly

from (10%, 45%) and (55%, 90%)



(a) Input image (b) Increase saturation to max (c) Increase HDR strength to max (d) Crop image with a sliding window
from top to bottom

Figure 2: Scores change when image (a) is modified by different operations.

(a) Input image (b) Increase saturation to max

Figure 3: Saturation and HDR scores coupled when increas-
ing saturation for image (a).

• Snapseed “Tune Image”, contrast parameter randomly
from (10%, 45%) and (55%, 90%)

• Snapseed “HDR Scape”, parameter randomly from
(10%, 100%) and (−100%,−10%). Negative effect is
simulated using Eq (6.3)
• Snapseed “Vignette”, with “Outer Brightness” in

(0%, 35%) to darken boundary, and (60%, 70%) to
brighten boundary.
• A curve-editing filter, where 6 control points evenly

spanning brightness range, move within (−15%, 15%)
of total range.
• A flatten-brightness filter with strength (10%, 100%),

and strength (−100%,−10%) using Eq (6.3)
The flatten-brightness filter moves each pixel’s brightness

b towards the Gaussian smooth average of its neighborhood b
with strength s ∈ (0, 1): bnew = b×s+b×(1−s). Gaussian
radius is 0.05× (width + height).

We trained 37 models with different random initialization
for about 2,000,000 steps each. For each model, we collect
snapshot of trained parameters roughly every 100000 steps.
We then apply all these models on a test dataset, and pick
best mask for each image using Φ

′
. We rank models by num-

ber of final results they contributed, and keep top 50. After
manual examination, 20 of these models, especially earlier in
training, generate visible artifacts to different degrees. After
removing them, we eventually keep top 30 models as {M}.

To better align 8×8 mask with photo content at full resolu-
tion, we apply a joint bilateral upsampling [Kopf et al., 2007]
on the mask against the photo before generating the final re-
sult. The effects of dramatic mask varies by images. Some-

Figure 4: Images before and after applying dramatic mask.

times it mimics traditional Vignetting. But in more general
cases the brightness modulation is based on image content.
Figure 4 shows several examples.

An end-to-end example is shown in Figure 5, where a
panorama in (a) is cropped into (b), with saturation and HDR
strength enhanced in (c), and finally with dramatic mask ap-
plied in (d).

6.5 Photo Creation
The environment for our robot is simulated by a collection of
panorama images from Google Street View. Most trails we
chose were collected on foot, instead of by vehicles. Loca-
tions we picked including Banff, Jasper and Glacier national
parks in Canada, Grand Canyon and Yellowstone National
Parks in US, and foot trails in Alps, Dolomites and Big Sur.
Panoramas were sampled sparsely along each trail to reduce
data amount and redundancy. Neighboring panoramas are
typically separated by tens of meters or more. Altogether
∼ 40000 panoramas were used. From them ∼ 31000 pho-



(a)

(b) (c) (d)

Figure 5: A panorama (a) is cropped into (b), with saturation
and HDR strength enhanced in (c), and with dramatic mask
applied in (d).

tos were created with predicted scores Φ̄ >= 2.5.
Street View imagery we used contains some artifacts,

which has an impact on quality of our results. Over-exposure
happens quite often in brighter area, such as on cloud, which
washes out details. Misalignment and blurry parts can also be
noticed in our results.

During evaluation, we manually removed results with se-
vere misalignment/blur, Street View equipments, black area
after panorama stitching, large portion of highway and large
human figures.

6.6 Evaluation
We work with 6 professionals for evaluation. We select them
with a minimum requirement of a bachelor’s degree in Pho-
tography and 2+ years experience as a professional photog-
rapher. To keep the evaluation as objective as possible, they
were not informed of our image creation attempt.

We conducted 6 rounds of calibration as described in Sec-
tion 5, using ∼ 2200 AVA images in total. The score devia-
tion per image dropped from initial 0.74 to 0.47.

We randomly sampled 400+ photos from our creation,
with predicted scores Φ̄ uniformly distributed between
(2.5, 3.0). (Most photos received a prediction score < 3.0
after linear fitting of Φ̄.) They are randomly mixed with 800
photos from AVA and other sources, sampled across different
quality.

Figure 6 shows how scores distribute for photos at differ-
ent predicted scores. A higher predicted score leads to higher
scores from professionals, which shows Φ̄ is correlated to
professional’s taste. More accurate prediction of profession-
als’ scores is still to be achieved. Average score per image is
the average of individual scores from all 6 professionals for
each image.

For 173 evaluated photos with a high predicted score >=
2.9, 41.4% of individual scores received from professionals

(a) (b)

(c) (d)

Figure 6: Individual (a) and per-image average (b) scores dis-
tribution for images at different predicted scores. As a com-
parison, score distribution for top-ranking AVA photos are
shown in (c) and (d), which are arguably a reasonable col-
lection of actual professional work.

are at or above semi-pro level (>= 3.0), with 13% of them
>= 3.5.

As a comparison, score distribution for sampled high-
ranking AVA photos are also shown in Figure 6 (c) and (d).
We can see even for top 5% photos ([0.95, 1] in graph) in AVA
dataset, arguably all at professional quality, only 45% scores
are at or above 3.5. This may serve as an estimation of the
“ceiling” for such an algorithm.

Some examples of created photos with prediction scores
> 2.7 are displayed in Figure 7. To demonstrate their qual-
ity variation according to the professionals, we select photos
with average professional scores < 2.0 in first row, ∼ 2.5 in
second row, and > 3.0 in last row.

More successful cases are manually selected from all of
the results, and presented in Figure 11. Photos in left column
are created from panoramas in right column. For each photo,
predicted score and average score from professionals are dis-
played. The chance to encounter results with similar scores
can be looked up in Figure 6 (b).

We compiled a show-case webpage that contains ad-
ditional results with nearby Street View panoramas at:
https://google.github.io/creatism
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Figure 7: Example photos with predicted scores > 2.7. Av-
erage professional scores are displayed below.
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Score Description
1.0 Beginner: Point-and-shoot without consideration for composition, lighting etc. (it can still be technically good, i.e., good focus, good exposure...)

- This photo has no attention to light, composition, or moment and there is no clear intent. Looks like a photo taken by accident or like someone just held the
camera up and pressed the shutter button... it’s not clear why anyone would take this photo or want to look at this photo.
- This score represents failure to use the camera properly and/or create anything that resembles a passable photo.
- These photographs clearly are point and shoot with no intention of a composition in mind. These photographs usually lack contrast or thought and have nothing
interesting in their subject matter.
- No artistic merit or intention and does not follow basic rules of composition, lighting or focus.

2.0 Amateur: Good photo for people without a background in photography. Nothing stands out as embarrassing. But nothing artistic either. Lighting and
composition are OK. The majority of population falls between 1 and 2.
- I’m simply bored when I look at this image and it creates a sense of indifference. The image does not engage me at all and there is nothing interesting in the photo.
This could be a combination of a poorly-lit image of a boring, cliched subject, and/or, an unsettled composition with poor tonal values.
- This photo has a clear subject and things like composition and moment are ok but not great. You can tell that this person saw something of interest and they
documented it, but they are still not thinking like a photographer because there is no attention to light, which is what photography is all about.
- Pure point-and-shoot. These photos show us what is in front of the person taking the photograph. There is a passing sense for composing the elements within the
frame. The angle is almost always at standing eye level. However, many of these images are acceptable to look at, and will often show interesting landscapes. The
key point of classification here, is that the image does not exhibit professional photographic skill. A point-and-shoot photographer can still make a nice image if
they are standing in front of beautiful landscape.
- These photographs have some degree of thought put into the composition, with a strong image in mind. The image may have a clear message, but they miss the
mark by either forgetting about contrast or composition. These are images that would usually fall into a camera phone photograph category.
- Intention in composition, lighting or framing, but poorly executed. Possible bad editing, out of focus, fragmenting, pixelation or poor quality.

2.5 Something artistic obviously presents in this photo. However, the attempt in this photo, content or editing, can not be called successful.
- The photo feels like it was taken, not made. Though the image is clear, there may be an attempt at composition without resolve, there is no point of focus, and/or
the tonal range may be only in the mid-tones making it flat. The light has not been considered to best capture the subject, and/or there are distracting objects in the
photo that keep it from the 3, 3.5, and 4 caliber.
- You can tell in this photo, that the person is paying attention to light! They are starting to think like a photographer. Things like composition, moment and subject
are an improvement but still lacking. There is attention to the way that light interacts with a subject or environment, even though the usage of light might not be
very good.
- This rating marks a step in the right direction beyond point-and-shoot photography. There is an effort here to create a better photo (interesting angle, composition,
use of silhouette, compelling lighting, etc....) However, the image still does not fully add up to a well-made photograph. (These are the sort of images you’ll see in
a Photo-1 class. Good effort and intentions, but more skill needs to be applied).
- These photographs have the intention of a good photograph but are missing out on many of the key elements of a professional photograph. This usually means
lack of focus or composition. The photo may have a beautiful image but is cropping out a person. The photograph may have a beautiful mountainside, but the entire
image is not straight.
- Average photo, not good or bad. Follows rules of composition with lighting and framing, but not particularly well executed.

3.0 Semi-Pro: One is on a path to become a professional photographer!
- I feel this is the critical break-point. The image is good with an effort to make/capture the shot, but the photo reveals a skill-level of one who does not have a lot of
experience making great images and may employ the use of Photoshop in an attempt to enhance the photo. This is what I call over-cooking the image. It cheapens
the photo and is a dead giveaway of an exploring ameteur. It is almost as if the photographer is trying too hard. The photo may also be technically and aesthetically
missing an element that would make it a 3.5. I would expect to find many of this caliber of imagery in a local art fair.
- This photo has attention to light, a clear subject, good composition and a clear intent but more than a few factors are still lacking. Usage of light is better, but not
great. the moment is a little awkward and the subject is boring.
- This is a good photograph that works. The general approach has created a worthwhile landscape. This often includes at least one professional strategy that brings
the image together (strong composition, depth-of-field, interesting angle, compelling lighting, etc....)
- These photographs show a strong understanding of imagery and composition with a clear intention. These photographs fall short when it comes to a subject matter
that defines a perfect photograph.
- Above average image with clear thought, focus and framing put into it.

3.5
- The image is better than most, but has been done before in a more complete way. Usually the subject is amazing but the lighting could be better at a different time
of day, or has any combination of great and slightly sub-great components. Its almost a 4, but I reserve 4s for only the best.
- This photo has excellent use of light, a clear subject, a clear intent and almost all of the characteristics of a professionally crafted photo but there is just one factor
that’s off. Either the subject is boring, the moment is a little awkward, or the composition is a little messy.
- This can be a tricky rating. For this, I often ask ”what could have been done here that would make this photo even better, and worthy of a 4 rating?” In that sense,
I use 3.5 to mark down from 4. Maybe the photographer oversaturated a perfectly good landscape, maybe they collided some elements within the frame (Ansel
Adams often mentioned this). Or maybe the image just needs one more element, something that a professional would be mindful of.
- These photographs have beautiful imagery but do not have the focus or the perfect composition that make a photograph truly professional. These are usually
almost perfect photographs but are missing out on the techniques that make a photograph stand out as a perfect image.
- Great image with purposeful depth of field and framing clearly taken by someone with photographic knowledge.

4.0 Pro: photos you think deserved to be called taken by a professional.
- This photo was made, not taken. Everything in the image is working together to the sum of a great image. Without question this image was made by a skilled
craftsman, one who is technically fluent, environmentally aware, has good timing and/or patience, is in command of post production and does not use clichd and
overused filters, and offers a controlled composition that has a relationship with the subject. Anyone who sees this image would consider it professional.
- This photo was created by someone who has studied photography and refined their craft. There is a great moment/interesting subject in great light. There is
meaningful interaction between light and subject. Excellent use of composition. The moment is just right, and you can clearly see the photographer’s intent.
- This is a well-made professional photograph which exhibits experience, technical know-how, and above all else - a sense for the strategies which go into making
strong landscape imagery.
- These photographs are clearly shot by a professional with a precise composition in mind. There is a strong contrast of darks and lights. These photographs use
techniques that show a strong understanding of their camera equipment.
- Excellent image, reserved only for the best images with well thought out intentional and dynamic compositions, good lighting with balance in colors and tones
and purposefully in or out of focus.

Table 1: For each aesthetic score, text in bold summarizes our initial description, followed by selected comments from profes-
sional photographers.



Predict: 2.6, Pro average: 3.3

Predict: 2.7, Pro average: 3.0

Predict: 2.6, Pro average: 3.0

Predict: 2.6, Pro average: 3.3

Predict: 2.8, Pro average: 3.3

Predict: 2.8, Pro average: 3.2



Predict: 2.8, Pro average: 2.8

Predict: 2.7, Pro average: 3.3

Predict: 2.6, Pro average: 3.5

Predict: 2.9, Pro average: 3.3

Predict: 2.4, Pro average: 2.8

Predict: 2.8, Pro average: 3.3



Predict: 2.8, Pro average: 3.0

Predict: 2.9, Pro average: 3.8

Predict: 2.9, Pro average: 2.8

Predict: 2.4, Pro average: 2.7

Predict: 2.2, Pro average: 3.0

Predict: 2.8, Pro average: 3.5



Predict: 2.4, Pro average: 2.8

Predict: 2.7, Pro average: 3.0

Predict: 2.6, Pro average: 3.2

Predict: 2.8, Pro average: 2.5

Predict: 2.7, Pro average: 3.3

Figure 11: Successful cases in our creation, with predicted and average professional rating.


